Internal
problem
ID
[17795]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
6.
Systems
of
First
Order
Linear
Equations.
Section
6.6
(Nonhomogeneous
Linear
Systems).
Problems
at
page
436
Problem
number
:
8
Date
solved
:
Thursday, March 13, 2025 at 10:49:26 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = -4*x__1(t)+x__2(t)+3*x__3(t)+3*t, diff(x__2(t),t) = -2*x__2(t), diff(x__3(t),t) = -2*x__1(t)+x__2(t)+x__3(t)+3*cos(t)]; dsolve(ode);
ode={D[x1[t],t]==-4*x1[t]+1*x2[t]+3*x3[t]+3*t,D[x2[t],t]==0*x1[t]-2*x2[t]-0*x3[t]+0,D[x3[t],t]==-2*x1[t]+1*x2[t]+1*x3[t]+3*Cos[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(-3*t + 4*x__1(t) - x__2(t) - 3*x__3(t) + Derivative(x__1(t), t),0),Eq(2*x__2(t) + Derivative(x__2(t), t),0),Eq(2*x__1(t) - x__2(t) - x__3(t) - 3*cos(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)