78.8.17 problem 17

Internal problem ID [18215]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Miscellaneous Problems for Chapter 2. Problems at page 99
Problem number : 17
Date solved : Tuesday, January 28, 2025 at 11:39:13 AM
CAS classification : [_exact]

\begin{align*} y^{2} {\mathrm e}^{y x}+\cos \left (x \right )+\left ({\mathrm e}^{y x}+x y \,{\mathrm e}^{y x}\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.014 (sec). Leaf size: 16

dsolve((y(x)^2*exp(x*y(x))+cos(x))+(exp(x*y(x))+x*y(x)*exp(x*y(x)) )*diff(y(x),x)=0,y(x), singsol=all)
 
\[ y = \frac {\operatorname {LambertW}\left (-x \left (c_{1} +\sin \left (x \right )\right )\right )}{x} \]

Solution by Mathematica

Time used: 60.264 (sec). Leaf size: 19

DSolve[(y[x]^2*Exp[x*y[x]]+Cos[x])+(Exp[x*y[x]]+x*y[x]*Exp[x*y[x]] )*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {W(x (-\sin (x)+c_1))}{x} \]