77.1.28 problem 44 (page 55)

Internal problem ID [17839]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 44 (page 55)
Date solved : Thursday, March 13, 2025 at 10:59:01 AM
CAS classification : [_rational, [_Riccati, _special]]

\begin{align*} y^{\prime }&=y^{2}+\frac {1}{x^{4}} \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 20
ode:=diff(y(x),x) = y(x)^2+1/x^4; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-x +\tan \left (c_{1} -\frac {1}{x}\right )}{x^{2}} \]
Mathematica. Time used: 0.216 (sec). Leaf size: 79
ode=D[y[x],x]==y[x]^2+1/x^4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {2 i c_1 e^{2 i/x}+x \left (i-2 c_1 e^{2 i/x}\right )-1}{x^2 \left (2 c_1 e^{2 i/x}-i\right )} \\ y(x)\to \frac {-x+i}{x^2} \\ \end{align*}
Sympy. Time used: 0.264 (sec). Leaf size: 39
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**2 + Derivative(y(x), x) - 1/x**4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {- C_{1} x e^{\frac {2 i}{x}} + i C_{1} e^{\frac {2 i}{x}} + x + i}{x^{2} \left (C_{1} e^{\frac {2 i}{x}} - 1\right )} \]