77.1.44 problem 61 (page 103)

Internal problem ID [17855]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 61 (page 103)
Date solved : Thursday, March 13, 2025 at 11:01:08 AM
CAS classification : [_Bernoulli]

\begin{align*} x y^{\prime }+y-x y^{2} \ln \left (x \right )&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 19
ode:=x*diff(y(x),x)+y(x)-x*y(x)^2*ln(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {2}{\left (\ln \left (x \right )^{2}-2 c_{1} \right ) x} \]
Mathematica. Time used: 0.149 (sec). Leaf size: 27
ode=x*D[y[x],x]+y[x]-x*y[x]^2*Log[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {2}{-x \log ^2(x)+2 c_1 x} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.252 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x)**2*log(x) + x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {2}{x \left (C_{1} - \log {\left (x \right )}^{2}\right )} \]