77.1.53 problem 72 (page 112)

Internal problem ID [17864]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 72 (page 112)
Date solved : Thursday, March 13, 2025 at 11:04:41 AM
CAS classification : [_quadrature]

\begin{align*} y&={\mathrm e}^{y^{\prime }} {y^{\prime }}^{2} \end{align*}

Maple. Time used: 0.319 (sec). Leaf size: 38
ode:=y(x) = exp(diff(y(x),x))*diff(y(x),x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= \frac {\left (x -c_{1} \right ) \left (\operatorname {LambertW}\left (\left (x -c_{1} \right ) {\mathrm e}\right )-1\right )^{2}}{\operatorname {LambertW}\left (\left (x -c_{1} \right ) {\mathrm e}\right )} \\ \end{align*}
Mathematica. Time used: 0.322 (sec). Leaf size: 102
ode=y[x]==Exp[D[y[x],x]]*D[y[x],x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1}}{W\left (-\frac {\sqrt {\text {$\#$1}}}{2}\right )}+\frac {\text {$\#$1}}{2 W\left (-\frac {\sqrt {\text {$\#$1}}}{2}\right )^2}\&\right ][2 x+c_1] \\ y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1}}{W\left (\frac {\sqrt {\text {$\#$1}}}{2}\right )}+\frac {\text {$\#$1}}{2 W\left (\frac {\sqrt {\text {$\#$1}}}{2}\right )^2}\&\right ][2 x+c_1] \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 1.124 (sec). Leaf size: 71
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - exp(Derivative(y(x), x))*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ - 2 x + \frac {y{\left (x \right )}}{W\left (- \frac {\sqrt {y{\left (x \right )}}}{2}\right )} + \frac {y{\left (x \right )}}{2 W^{2}\left (- \frac {\sqrt {y{\left (x \right )}}}{2}\right )} = C_{1}, \ - 2 x + \frac {y{\left (x \right )}}{W\left (\frac {\sqrt {y{\left (x \right )}}}{2}\right )} + \frac {y{\left (x \right )}}{2 W^{2}\left (\frac {\sqrt {y{\left (x \right )}}}{2}\right )} = C_{1}\right ] \]