77.1.75 problem 94 (page 135)

Internal problem ID [17886]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 94 (page 135)
Date solved : Friday, March 14, 2025 at 04:53:29 AM
CAS classification : [[_homogeneous, `class G`]]

\begin{align*} {y^{\prime }}^{4}&=4 y \left (x y^{\prime }-2 y\right )^{2} \end{align*}

Maple. Time used: 0.151 (sec). Leaf size: 120
ode:=diff(y(x),x)^4 = 4*y(x)*(x*diff(y(x),x)-2*y(x))^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {x^{4}}{16} \\ y &= 0 \\ y \left (\sqrt {x^{2}-4 \sqrt {y}}-x \right )^{-\frac {2 \sqrt {x^{2} y-4 y^{{3}/{2}}}}{\sqrt {x^{2}-4 \sqrt {y}}\, \sqrt {y}}} \left (\sqrt {x^{2}-4 \sqrt {y}}+x \right )^{\frac {2 \sqrt {x^{2} y-4 y^{{3}/{2}}}}{\sqrt {x^{2}-4 \sqrt {y}}\, \sqrt {y}}}-c_{1} &= 0 \\ \end{align*}
Mathematica. Time used: 4.015 (sec). Leaf size: 779
ode=D[y[x],x]^4==4*y[x]*(x*D[y[x],x]-2*y[x])^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\frac {\sqrt {x^2-4 \sqrt {y(x)}} \sqrt {x^2 y(x)-4 y(x)^{3/2}}}{8 y(x)-2 x^2 \sqrt {y(x)}}+\frac {\sqrt {\left (x^2-4 \sqrt {y(x)}\right ) y(x)} \log \left (\sqrt {x^2-4 \sqrt {y(x)}}-x\right )}{\sqrt {x^2-4 \sqrt {y(x)}} \sqrt {y(x)}}+\log \left (4 y(x)^{3/2}-x^2 y(x)\right )-\log \left (x^2 \left (-\sqrt {y(x)}\right )+\sqrt {x^2-4 \sqrt {y(x)}} \sqrt {x^2 y(x)-4 y(x)^{3/2}}+4 y(x)\right )&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {\sqrt {\left (x^2+4 \sqrt {y(x)}\right ) y(x)} \log \left (\sqrt {x^2+4 \sqrt {y(x)}}-x\right )}{\sqrt {x^2+4 \sqrt {y(x)}} \sqrt {y(x)}}+\frac {1}{4} \left (-\frac {2 \sqrt {x^2+4 \sqrt {y(x)}} \sqrt {y(x)}}{\sqrt {\left (x^2+4 \sqrt {y(x)}\right ) y(x)}}+4 \log \left (\sqrt {x^2+4 \sqrt {y(x)}} y(x)\right )-4 \log \left (\sqrt {\left (x^2+4 \sqrt {y(x)}\right ) y(x)}-\sqrt {x^2+4 \sqrt {y(x)}} \sqrt {y(x)}\right )\right )&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {1}{4} \left (\frac {2 \sqrt {x^2+4 \sqrt {y(x)}} \sqrt {y(x)}}{\sqrt {\left (x^2+4 \sqrt {y(x)}\right ) y(x)}}+4 \log \left (\sqrt {x^2+4 \sqrt {y(x)}} y(x)\right )-4 \log \left (\sqrt {x^2+4 \sqrt {y(x)}} \sqrt {y(x)}+\sqrt {\left (x^2+4 \sqrt {y(x)}\right ) y(x)}\right )\right )-\frac {\sqrt {\left (x^2+4 \sqrt {y(x)}\right ) y(x)} \log \left (\sqrt {x^2+4 \sqrt {y(x)}}-x\right )}{\sqrt {x^2+4 \sqrt {y(x)}} \sqrt {y(x)}}&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {1}{4} \left (\frac {2 \sqrt {x^2 y(x)-4 y(x)^{3/2}}}{\sqrt {x^2-4 \sqrt {y(x)}} \sqrt {y(x)}}+4 \log \left (4 y(x)^{3/2}-x^2 y(x)\right )-4 \log \left (x^2 \sqrt {y(x)}+\sqrt {x^2-4 \sqrt {y(x)}} \sqrt {x^2 y(x)-4 y(x)^{3/2}}-4 y(x)\right )\right )-\frac {\sqrt {\left (x^2-4 \sqrt {y(x)}\right ) y(x)} \log \left (\sqrt {x^2-4 \sqrt {y(x)}}-x\right )}{\sqrt {x^2-4 \sqrt {y(x)}} \sqrt {y(x)}}&=c_1,y(x)\right ] \\ y(x)\to 0 \\ y(x)\to \frac {x^4}{16} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*(x*Derivative(y(x), x) - 2*y(x))**2*y(x) + Derivative(y(x), x)**4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out