Internal
problem
ID
[856]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
5.3,
second
order
linear
equations.
Page
323
Problem
number
:
23
Date
solved
:
Tuesday, March 04, 2025 at 11:54:00 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)-6*diff(y(x),x)+25*y(x) = 0; ic:=y(0) = 4, D(y)(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]-6*D[y[x],x]+25*y[x]==0; ic={y[0]==4,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(25*y(x) - 6*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 4, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics)