77.1.135 problem 162 (page 236)

Internal problem ID [17946]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 162 (page 236)
Date solved : Thursday, March 13, 2025 at 11:11:57 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+9 y&=\ln \left (2 \sin \left (\frac {x}{2}\right )\right ) \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 128
ode:=diff(diff(y(x),x),x)+9*y(x) = ln(2*sin(1/2*x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {1}{54}+\frac {i \pi \left (\operatorname {csgn}\left (\sin \left (\frac {x}{2}\right )\right ) \operatorname {csgn}\left (i {\mathrm e}^{-\frac {i x}{2}}\right )+1\right ) \operatorname {csgn}\left (i \left ({\mathrm e}^{i x}-1\right )\right )}{18}+\frac {i \operatorname {csgn}\left (i {\mathrm e}^{-\frac {i x}{2}}\right ) \pi }{18}+\frac {i \pi \left (\operatorname {csgn}\left (\sin \left (\frac {x}{2}\right )\right )-1\right ) \operatorname {csgn}\left (i \sin \left (\frac {x}{2}\right )\right )}{18}+\frac {\left (1-\cos \left (3 x \right )\right ) \ln \left ({\mathrm e}^{i x}-1\right )}{9}-\frac {\ln \left ({\mathrm e}^{\frac {i x}{2}}\right )}{9}-\frac {{\mathrm e}^{-i x}}{36}-\frac {{\mathrm e}^{i x}}{36}+\frac {\cos \left (3 x \right ) \left (i x +18 c_{1} \right )}{18}+\frac {\left (-x +18 c_{2} \right ) \sin \left (3 x \right )}{18}-\frac {\cos \left (2 x \right )}{9} \]
Mathematica. Time used: 0.107 (sec). Leaf size: 76
ode=D[y[x],{x,2}]+9*y[x]==Log[2*Sin[x/2]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{54} \left (-3 x \sin (3 x)-3 \cos (x)-6 \cos (2 x)+10 \cos (3 x)+6 \log \left (2 \sin \left (\frac {x}{2}\right )\right )+54 c_1 \cos (3 x)+54 c_2 \sin (3 x)-6 \cos (3 x) \log \left (2 \sin \left (\frac {x}{2}\right )\right )-1\right ) \]
Sympy. Time used: 107.777 (sec). Leaf size: 53
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*y(x) - log(2*sin(x/2)) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} - \frac {\int \left (\log {\left (\sin {\left (\frac {x}{2} \right )} \right )} + \log {\left (2 \right )}\right ) \sin {\left (3 x \right )}\, dx}{3}\right ) \cos {\left (3 x \right )} + \left (C_{2} + \frac {\int \left (\log {\left (\sin {\left (\frac {x}{2} \right )} \right )} + \log {\left (2 \right )}\right ) \cos {\left (3 x \right )}\, dx}{3}\right ) \sin {\left (3 x \right )} \]