Internal
problem
ID
[18028]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
7
(Homogeneous
Equations).
Problems
at
page
67
Problem
number
:
1
(d)
Date
solved
:
Thursday, March 13, 2025 at 11:21:04 AM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=x*sin(y(x)/x)*diff(y(x),x) = y(x)*sin(y(x)/x)+x; dsolve(ode,y(x), singsol=all);
ode=x*Sin[y[x]/x]*D[y[x],x]==y[x]*Sin[y[x]/x]+x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*sin(y(x)/x)*Derivative(y(x), x) - x - y(x)*sin(y(x)/x),0) ics = {} dsolve(ode,func=y(x),ics=ics)