78.19.5 problem 2 (a)

Internal problem ID [18424]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 5. Power Series Solutions and Special Functions. Section 29. Regular singular Points. Problems at page 227
Problem number : 2 (a)
Date solved : Tuesday, January 28, 2025 at 11:49:48 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+y \sin \left (x \right )&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 34

Order:=6; 
dsolve(diff(y(x),x$2)+sin(x)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{6} x^{3}+\frac {1}{120} x^{5}\right ) y \left (0\right )+\left (x -\frac {1}{12} x^{4}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 35

AsymptoticDSolveValue[D[y[x],{x,2}]+Sin[x]*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 \left (x-\frac {x^4}{12}\right )+c_1 \left (\frac {x^5}{120}-\frac {x^3}{6}+1\right ) \]