78.19.16 problem 5

Internal problem ID [18435]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 5. Power Series Solutions and Special Functions. Section 29. Regular singular Points. Problems at page 227
Problem number : 5
Date solved : Tuesday, January 28, 2025 at 11:50:00 AM
CAS classification : [_Lienard]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 32

Order:=6; 
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+x^2*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (c_{2} \ln \left (x \right )+c_{1} \right ) \left (1-\frac {1}{4} x^{2}+\frac {1}{64} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\left (\frac {1}{4} x^{2}-\frac {3}{128} x^{4}+\operatorname {O}\left (x^{6}\right )\right ) c_{2} \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 60

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]+x*D[y[x],x]+x^2*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {x^4}{64}-\frac {x^2}{4}+1\right )+c_2 \left (-\frac {3 x^4}{128}+\frac {x^2}{4}+\left (\frac {x^4}{64}-\frac {x^2}{4}+1\right ) \log (x)\right ) \]