78.20.1 problem 1

Internal problem ID [18438]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 5. Power Series Solutions and Special Functions. Section 30. Regular singular Points (continued). Problems at page 235
Problem number : 1
Date solved : Tuesday, January 28, 2025 at 11:50:02 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (4 x +4\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 48

Order:=6; 
dsolve(x^2*diff(y(x),x$2)-3*x*diff(y(x),x)+(4*x+4)*y(x)=0,y(x),type='series',x=0);
 
\[ y = x^{2} \left (\left (c_{2} \ln \left (x \right )+c_{1} \right ) \left (1-4 x +4 x^{2}-\frac {16}{9} x^{3}+\frac {4}{9} x^{4}-\frac {16}{225} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (8 x -12 x^{2}+\frac {176}{27} x^{3}-\frac {50}{27} x^{4}+\frac {1096}{3375} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_{2} \right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 116

AsymptoticDSolveValue[x^2*D[y[x],{x,2}]-3*x*D[y[x],x]+(4*x+4)*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (-\frac {16 x^5}{225}+\frac {4 x^4}{9}-\frac {16 x^3}{9}+4 x^2-4 x+1\right ) x^2+c_2 \left (\left (\frac {1096 x^5}{3375}-\frac {50 x^4}{27}+\frac {176 x^3}{27}-12 x^2+8 x\right ) x^2+\left (-\frac {16 x^5}{225}+\frac {4 x^4}{9}-\frac {16 x^3}{9}+4 x^2-4 x+1\right ) x^2 \log (x)\right ) \]