78.20.3 problem 3 (a)

Internal problem ID [18440]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 5. Power Series Solutions and Special Functions. Section 30. Regular singular Points (continued). Problems at page 235
Problem number : 3 (a)
Date solved : Tuesday, January 28, 2025 at 11:50:04 AM
CAS classification : [_Lienard]

\begin{align*} x y^{\prime \prime }+2 y^{\prime }+y x&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 32

Order:=6; 
dsolve(x*diff(y(x),x$2)+2*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);
 
\[ y = c_{1} \left (1-\frac {1}{6} x^{2}+\frac {1}{120} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_{2} \left (1-\frac {1}{2} x^{2}+\frac {1}{24} x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{x} \]

Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 42

AsymptoticDSolveValue[x*D[y[x],{x,2}]+2*D[y[x],x]+x*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {x^3}{24}-\frac {x}{2}+\frac {1}{x}\right )+c_2 \left (\frac {x^4}{120}-\frac {x^2}{6}+1\right ) \]