78.21.1 problem 2 (a)

Internal problem ID [18445]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 5. Power Series Solutions and Special Functions. Section 31. Gauss Hypergeometric Equation. Problems at page 240
Problem number : 2 (a)
Date solved : Tuesday, January 28, 2025 at 11:50:10 AM
CAS classification : [_Jacobi]

\begin{align*} x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.008 (sec). Leaf size: 36

Order:=6; 
dsolve(x*(1-x)*diff(y(x),x$2)+(3/2-2*x)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);
 
\[ y = \frac {c_{1} \left (1-\frac {9}{2} x +\frac {15}{8} x^{2}+\frac {7}{16} x^{3}+\frac {27}{128} x^{4}+\frac {33}{256} x^{5}+\operatorname {O}\left (x^{6}\right )\right )}{\sqrt {x}}+c_{2} \left (1-\frac {4}{3} x +\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 57

AsymptoticDSolveValue[x*(1-x)*D[y[x],{x,2}]+(3/2-2*x)*D[y[x],x]+2*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to \frac {c_2 \left (\frac {33 x^5}{256}+\frac {27 x^4}{128}+\frac {7 x^3}{16}+\frac {15 x^2}{8}-\frac {9 x}{2}+1\right )}{\sqrt {x}}+c_1 \left (1-\frac {4 x}{3}\right ) \]