78.5.21 problem 4 (j)

Internal problem ID [18085]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Section 9 (Integrating Factors). Problems at page 80
Problem number : 4 (j)
Date solved : Thursday, March 13, 2025 at 11:35:28 AM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} x y^{\prime }-y&=x^{2} y^{4} \left (x y^{\prime }+y\right ) \end{align*}

Maple. Time used: 0.033 (sec). Leaf size: 23
ode:=-y(x)+x*diff(y(x),x) = x^2*y(x)^4*(x*diff(y(x),x)+y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \operatorname {RootOf}\left (x^{6} \textit {\_Z}^{4}+3-{\mathrm e}^{\frac {3 c_1}{2}} \textit {\_Z} \right ) x \]
Mathematica. Time used: 60.122 (sec). Leaf size: 1141
ode=x*D[y[x],x]-y[x] == x^2*y[x]^4*(x*D[y[x],x]+y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*(x*Derivative(y(x), x) + y(x))*y(x)**4 + x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out