Internal
problem
ID
[18157]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Miscellaneous
Problems
for
Chapter
2.
Problems
at
page
99
Problem
number
:
38
Date
solved
:
Thursday, March 13, 2025 at 11:45:39 AM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=diff(y(x),x) = (-3*x-2*y(x)-1)/(2*x+3*y(x)-1); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-3*x-2*y[x]-1)/(2*x+3*y[x]-1); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(-3*x - 2*y(x) - 1)/(2*x + 3*y(x) - 1) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)