80.3.6 problem 6

Internal problem ID [18550]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 29. Problems at page 81
Problem number : 6
Date solved : Tuesday, January 28, 2025 at 11:57:59 AM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, _dAlembert]

\begin{align*} \frac {2 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.013 (sec). Leaf size: 313

dsolve(2*x/y(x)^3+(1/y(x)^2-3*x^2/y(x)^4)*diff(y(x),x)=0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \frac {1+\frac {\left (12 \sqrt {3}\, x \sqrt {27 x^{2} c_{1}^{2}-4}\, c_{1} -108 x^{2} c_{1}^{2}+8\right )^{{1}/{3}}}{2}+\frac {2}{\left (12 \sqrt {3}\, x \sqrt {27 x^{2} c_{1}^{2}-4}\, c_{1} -108 x^{2} c_{1}^{2}+8\right )^{{1}/{3}}}}{3 c_{1}} \\ y \left (x \right ) &= -\frac {\left (1+i \sqrt {3}\right ) \left (12 \sqrt {3}\, x \sqrt {27 x^{2} c_{1}^{2}-4}\, c_{1} -108 x^{2} c_{1}^{2}+8\right )^{{2}/{3}}-4 i \sqrt {3}-4 \left (12 \sqrt {3}\, x \sqrt {27 x^{2} c_{1}^{2}-4}\, c_{1} -108 x^{2} c_{1}^{2}+8\right )^{{1}/{3}}+4}{12 \left (12 \sqrt {3}\, x \sqrt {27 x^{2} c_{1}^{2}-4}\, c_{1} -108 x^{2} c_{1}^{2}+8\right )^{{1}/{3}} c_{1}} \\ y \left (x \right ) &= \frac {\left (i \sqrt {3}-1\right ) \left (12 \sqrt {3}\, x \sqrt {27 x^{2} c_{1}^{2}-4}\, c_{1} -108 x^{2} c_{1}^{2}+8\right )^{{2}/{3}}-4 i \sqrt {3}+4 \left (12 \sqrt {3}\, x \sqrt {27 x^{2} c_{1}^{2}-4}\, c_{1} -108 x^{2} c_{1}^{2}+8\right )^{{1}/{3}}-4}{12 \left (12 \sqrt {3}\, x \sqrt {27 x^{2} c_{1}^{2}-4}\, c_{1} -108 x^{2} c_{1}^{2}+8\right )^{{1}/{3}} c_{1}} \\ \end{align*}

Solution by Mathematica

Time used: 60.180 (sec). Leaf size: 458

DSolve[2*x/y[x]^3+(1/y[x]^2-3*x^2/y[x]^4)*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {1}{3} \left (\frac {\sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}{\sqrt [3]{2}}+\frac {\sqrt [3]{2} e^{2 c_1}}{\sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}-e^{c_1}\right ) \\ y(x)\to \frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}{6 \sqrt [3]{2}}-\frac {i \left (\sqrt {3}-i\right ) e^{2 c_1}}{3\ 2^{2/3} \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}-\frac {e^{c_1}}{3} \\ y(x)\to -\frac {i \left (\sqrt {3}-i\right ) \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}{6 \sqrt [3]{2}}+\frac {i \left (\sqrt {3}+i\right ) e^{2 c_1}}{3\ 2^{2/3} \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}-\frac {e^{c_1}}{3} \\ \end{align*}