78.11.6 problem 6

Internal problem ID [18198]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 3. Second order linear equations. Section 16. The Use of a Known Solution to find Another. Problems at page 121
Problem number : 6
Date solved : Thursday, March 13, 2025 at 11:48:53 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=\frac {\sin \left (x \right )}{\sqrt {x}} \end{align*}

Maple. Time used: 0.013 (sec). Leaf size: 17
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+(x^2-1/4)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_{1} \sin \left (x \right )+c_{2} \cos \left (x \right )}{\sqrt {x}} \]
Mathematica. Time used: 0.018 (sec). Leaf size: 33
ode=(1-x^2)*D[y[x],{x,2}] -2*x*D[y[x],x]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 x-\frac {1}{2} c_2 (x \log (1-x)-x \log (x+1)+2) \]
Sympy. Time used: 0.199 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (x**2 - 1/4)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} J_{\frac {1}{2}}\left (x\right ) + C_{2} Y_{\frac {1}{2}}\left (x\right ) \]