78.12.1 problem 1 (a)

Internal problem ID [18209]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 3. Second order linear equations. Section 17. The Homogeneous Equation with Constant Coefficients. Problems at page 125
Problem number : 1 (a)
Date solved : Thursday, March 13, 2025 at 11:49:04 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)+diff(y(x),x)-6*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_{1} {\mathrm e}^{5 x}+c_{2} \right ) {\mathrm e}^{-3 x} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 22
ode=D[y[x],{x,2}] +D[y[x],x]-6*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-3 x} \left (c_2 e^{5 x}+c_1\right ) \]
Sympy. Time used: 0.122 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*y(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 3 x} + C_{2} e^{2 x} \]