81.3.13 problem 13

Internal problem ID [18631]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter III. Ordinary differential equations of the first order and first degree. Exercises at page 33
Problem number : 13
Date solved : Tuesday, January 28, 2025 at 12:04:51 PM
CAS classification : [_Bernoulli]

\begin{align*} y^{\prime }-\tan \left (x \right ) y&=y^{4} \sec \left (x \right ) \end{align*}

Solution by Maple

Time used: 0.019 (sec). Leaf size: 183

dsolve(diff(y(x),x)-tan(x)*y(x)=y(x)^4*sec(x),y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \frac {\sec \left (x \right ) \left (\cos \left (x \right )^{3} \left (\cos \left (x \right )^{3} c_{1} -2 \cos \left (x \right )^{2} \sin \left (x \right )-\sin \left (x \right )\right )^{2}\right )^{{1}/{3}}}{\cos \left (x \right )^{3} c_{1} -2 \cos \left (x \right )^{2} \sin \left (x \right )-\sin \left (x \right )} \\ y \left (x \right ) &= -\frac {\left (1+i \sqrt {3}\right ) \sec \left (x \right ) \left (\cos \left (x \right )^{3} \left (\cos \left (x \right )^{3} c_{1} -2 \cos \left (x \right )^{2} \sin \left (x \right )-\sin \left (x \right )\right )^{2}\right )^{{1}/{3}}}{2 \cos \left (x \right )^{3} c_{1} -4 \cos \left (x \right )^{2} \sin \left (x \right )-2 \sin \left (x \right )} \\ y \left (x \right ) &= \frac {\sec \left (x \right ) \left (\cos \left (x \right )^{3} \left (\cos \left (x \right )^{3} c_{1} -2 \cos \left (x \right )^{2} \sin \left (x \right )-\sin \left (x \right )\right )^{2}\right )^{{1}/{3}} \left (i \sqrt {3}-1\right )}{2 \cos \left (x \right )^{3} c_{1} -4 \cos \left (x \right )^{2} \sin \left (x \right )-2 \sin \left (x \right )} \\ \end{align*}

Solution by Mathematica

Time used: 1.070 (sec). Leaf size: 109

DSolve[D[y[x],x]-Tan[x]*y[x]==y[x]^4*Sec[x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {1}{\sqrt [3]{-\sin ^3(x)+c_1 \cos ^3(x)-3 \sin (x) \cos ^2(x)}} \\ y(x)\to -\frac {\sqrt [3]{-1}}{\sqrt [3]{-\sin ^3(x)+c_1 \cos ^3(x)-3 \sin (x) \cos ^2(x)}} \\ y(x)\to \frac {(-1)^{2/3}}{\sqrt [3]{-\sin ^3(x)+c_1 \cos ^3(x)-3 \sin (x) \cos ^2(x)}} \\ y(x)\to 0 \\ \end{align*}