Internal
problem
ID
[18637]
Book
:
A
short
course
on
differential
equations.
By
Donald
Francis
Campbell.
Maxmillan
company.
London.
1907
Section
:
Chapter
III.
Ordinary
differential
equations
of
the
first
order
and
first
degree.
Exercises
at
page
33
Problem
number
:
19
Date
solved
:
Tuesday, January 28, 2025 at 12:05:11 PM
CAS
classification
:
[_exact, _rational]
\begin{align*} x^{3}+4 y x +y^{2}+\left (2 x^{2}+2 y x +4 y^{3}\right ) y^{\prime }&=0 \end{align*}
Time used: 0.004 (sec). Leaf size: 27
\[
\frac {x^{4}}{4}+2 x^{2} y \left (x \right )+x y \left (x \right )^{2}+y \left (x \right )^{4}+c_{1} = 0
\]
Time used: 60.245 (sec). Leaf size: 1965
\begin{align*}
y(x)\to \frac {\sqrt {\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}+\frac {3 x^4+x^2-12 c_1}{\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}}-2 x}-\sqrt {-\frac {12 \sqrt {3} x^2}{\sqrt {\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}+\frac {3 x^4+x^2-12 c_1}{\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}}-2 x}}-\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}+\frac {-3 x^4-x^2+12 c_1}{\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}}-4 x}}{2 \sqrt {3}} \\
y(x)\to \frac {\sqrt {\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}+\frac {3 x^4+x^2-12 c_1}{\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}}-2 x}+\sqrt {-\frac {12 \sqrt {3} x^2}{\sqrt {\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}+\frac {3 x^4+x^2-12 c_1}{\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}}-2 x}}-\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}+\frac {-3 x^4-x^2+12 c_1}{\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}}-4 x}}{2 \sqrt {3}} \\
y(x)\to -\frac {\sqrt {\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}+\frac {3 x^4+x^2-12 c_1}{\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}}-2 x}+\sqrt {\frac {12 \sqrt {3} x^2}{\sqrt {\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}+\frac {3 x^4+x^2-12 c_1}{\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}}-2 x}}-\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}+\frac {-3 x^4-x^2+12 c_1}{\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}}-4 x}}{2 \sqrt {3}} \\
y(x)\to \frac {\sqrt {\frac {12 \sqrt {3} x^2}{\sqrt {\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}+\frac {3 x^4+x^2-12 c_1}{\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}}-2 x}}-\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}+\frac {-3 x^4-x^2+12 c_1}{\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}}-4 x}-\sqrt {\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}+\frac {3 x^4+x^2-12 c_1}{\sqrt [3]{-9 x^5+54 x^4+x^3+\sqrt {\left (-9 x^5+54 x^4+x^3+36 c_1 x\right ){}^2-\left (3 x^4+x^2-12 c_1\right ){}^3}+36 c_1 x}}-2 x}}{2 \sqrt {3}} \\
\end{align*}