78.15.20 problem 22 (a)

Internal problem ID [18297]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 3. Second order linear equations. Section 22. Higher Order Linear Equations. Coupled Harmonic Oscillators. Problems at page 160
Problem number : 22 (a)
Date solved : Thursday, March 13, 2025 at 11:53:11 AM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 14
ode:=x^3*diff(diff(diff(y(x),x),x),x)+3*x^2*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_{1} +\frac {c_{2}}{x}+c_3 x \]
Mathematica. Time used: 0.025 (sec). Leaf size: 21
ode=x^3*D[y[x],{x,3}]+3*x^2*D[y[x],{x,2}]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_1}{2 x}+c_3 x+c_2 \]
Sympy. Time used: 0.078 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), (x, 3)) + 3*x**2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {C_{2}}{x} + C_{3} x \]