8.11.28 problem 51

Internal problem ID [896]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number : 51
Date solved : Tuesday, March 04, 2025 at 11:59:56 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+4 y&=\cos \left (3 x \right ) \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 23
ode:=diff(diff(y(x),x),x)+4*y(x) = cos(3*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (2 x \right ) c_2 +\cos \left (2 x \right ) c_1 -\frac {\cos \left (3 x \right )}{5} \]
Mathematica. Time used: 0.027 (sec). Leaf size: 28
ode=D[y[x],{x,2}]+4*y[x]==Cos[3*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {1}{5} \cos (3 x)+c_1 \cos (2 x)+c_2 \sin (2 x) \]
Sympy. Time used: 0.076 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) - cos(3*x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (2 x \right )} + C_{2} \cos {\left (2 x \right )} - \frac {\cos {\left (3 x \right )}}{5} \]