Internal
problem
ID
[18308]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
3.
Second
order
linear
equations.
Section
23.
Operator
Methods
for
Finding
Particular
Solutions.
Problems
at
page
169
Problem
number
:
8
Date
solved
:
Thursday, March 13, 2025 at 11:53:56 AM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(y(x),x),x),x)-2*diff(y(x),x)+y(x) = 2*x^3-3*x^2+4*x+5; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,3}]-2*D[y[x],x]+y[x]==2*x^3-3*x^2+4*x+5; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x**3 + 3*x**2 - 4*x + y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 3)) - 5,0) ics = {} dsolve(ode,func=y(x),ics=ics)