81.7.4 problem 5

Internal problem ID [18701]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter VI. Certain particular forms of equations. Exercises at page 74
Problem number : 5
Date solved : Tuesday, January 28, 2025 at 12:10:47 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y^{\prime \prime }&=\frac {1}{y^{2}} \end{align*}

Solution by Maple

Time used: 0.020 (sec). Leaf size: 335

dsolve(diff(y(x),x$2)=1/y(x)^2,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \frac {c_{1} \left ({\mathrm e}^{2 \operatorname {RootOf}\left (-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}-2 \textit {\_Z} \,c_{1}^{3} {\mathrm e}^{\textit {\_Z}}+\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4}-2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} -2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) x \right )}+2 \,{\mathrm e}^{\operatorname {RootOf}\left (-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}-2 \textit {\_Z} \,c_{1}^{3} {\mathrm e}^{\textit {\_Z}}+\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4}-2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} -2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) x \right )} c_{1} +c_{1}^{2}\right ) {\mathrm e}^{-\operatorname {RootOf}\left (-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}-2 \textit {\_Z} \,c_{1}^{3} {\mathrm e}^{\textit {\_Z}}+\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4}-2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} -2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) x \right )}}{2} \\ y \left (x \right ) &= \frac {c_{1} \left ({\mathrm e}^{2 \operatorname {RootOf}\left (-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}-2 \textit {\_Z} \,c_{1}^{3} {\mathrm e}^{\textit {\_Z}}+\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4}+2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} +2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) x \right )}+2 \,{\mathrm e}^{\operatorname {RootOf}\left (-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}-2 \textit {\_Z} \,c_{1}^{3} {\mathrm e}^{\textit {\_Z}}+\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4}+2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} +2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) x \right )} c_{1} +c_{1}^{2}\right ) {\mathrm e}^{-\operatorname {RootOf}\left (-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{2}-2 \textit {\_Z} \,c_{1}^{3} {\mathrm e}^{\textit {\_Z}}+\operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{1}^{4}+2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) c_{2} +2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_{1}}\right ) x \right )}}{2} \\ \end{align*}

Solution by Mathematica

Time used: 0.148 (sec). Leaf size: 62

DSolve[D[y[x],{x,2}]==1/y[x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\left (\frac {2 \text {arctanh}\left (\frac {\sqrt {-\frac {2}{y(x)}+c_1}}{\sqrt {c_1}}\right )}{c_1{}^{3/2}}+\frac {y(x) \sqrt {-\frac {2}{y(x)}+c_1}}{c_1}\right ){}^2=(x+c_2){}^2,y(x)\right ] \]