78.21.4 problem 2 (d)

Internal problem ID [18369]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 5. Power Series Solutions and Special Functions. Section 31. Gauss Hypergeometric Equation. Problems at page 240
Problem number : 2 (d)
Date solved : Thursday, March 13, 2025 at 11:55:05 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} \left (x^{2}-x -6\right ) y^{\prime \prime }+\left (5+3 x \right ) y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 3 \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 46
Order:=6; 
ode:=(x^2-x-6)*diff(diff(y(x),x),x)+(3*x+5)*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x),type='series',x=3);
 
\[ y = \frac {c_{1} \left (1+\frac {4}{25} \left (-3+x \right )-\frac {2}{625} \left (-3+x \right )^{2}+\frac {4}{15625} \left (-3+x \right )^{3}-\frac {11}{390625} \left (-3+x \right )^{4}+\frac {176}{48828125} \left (-3+x \right )^{5}+\operatorname {O}\left (\left (-3+x \right )^{6}\right )\right )}{\left (-3+x \right )^{{9}/{5}}}+c_{2} \left (1-\frac {1}{14} \left (-3+x \right )+\frac {1}{133} \left (-3+x \right )^{2}-\frac {1}{1064} \left (-3+x \right )^{3}+\frac {1}{7714} \left (-3+x \right )^{4}-\frac {5}{262276} \left (-3+x \right )^{5}+\operatorname {O}\left (\left (-3+x \right )^{6}\right )\right ) \]
Mathematica. Time used: 0.004 (sec). Leaf size: 109
ode=(x^2-x-6)*D[y[x],{x,2}]+(5+3*x)*D[y[x],x]+y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,3,5}]
 
\[ y(x)\to c_1 \left (-\frac {5 (x-3)^5}{262276}+\frac {(x-3)^4}{7714}-\frac {(x-3)^3}{1064}+\frac {1}{133} (x-3)^2+\frac {3-x}{14}+1\right )+\frac {c_2 \left (\frac {176 (x-3)^5}{48828125}-\frac {11 (x-3)^4}{390625}+\frac {4 (x-3)^3}{15625}-\frac {2}{625} (x-3)^2+\frac {4 (x-3)}{25}+1\right )}{(x-3)^{9/5}} \]
Sympy. Time used: 1.031 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((3*x + 5)*Derivative(y(x), x) + (x**2 - x - 6)*Derivative(y(x), (x, 2)) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=3,n=6)
 
\[ y{\left (x \right )} = \frac {C_{2}}{\left (x - 3\right )^{\frac {9}{5}}} + C_{1} + O\left (x^{6}\right ) \]