82.12.20 problem Ex. 22

Internal problem ID [18785]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter II. Equations of the first order and of the first degree. Examples on chapter II at page 29
Problem number : Ex. 22
Date solved : Tuesday, January 28, 2025 at 12:17:21 PM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} y+\left (a \,x^{2} y^{n}-2 x \right ) y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.112 (sec). Leaf size: 33

dsolve(y(x)+(a*x^2*y(x)^n-2*x)*diff(y(x),x)=0,y(x), singsol=all)
 
\[ \left (y \left (x \right )^{n} a x -n -2\right )^{n} y \left (x \right )^{2 n} x^{-n}-c_{1} = 0 \]

Solution by Mathematica

Time used: 0.217 (sec). Leaf size: 42

DSolve[y[x]+(a*x^2*y[x]^n-2*x)*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [\frac {n \left (\log (x)-\log \left (-a x y(x)^n+n+2\right )\right )}{n+2}-\frac {2 n \log (y(x))}{n+2}=c_1,y(x)\right ] \]