82.14.3 problem Ex. 3

Internal problem ID [18809]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter III. Equations of the first order but not of the first degree. Problems at page 33
Problem number : Ex. 3
Date solved : Tuesday, January 28, 2025 at 12:21:13 PM
CAS classification : [[_homogeneous, `class G`]]

\begin{align*} 4 y&=x^{2}+{y^{\prime }}^{2} \end{align*}

Solution by Maple

Time used: 0.030 (sec). Leaf size: 136

dsolve(4*y(x)=x^2+diff(y(x),x)^2,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \frac {x^{2} \left (2 \operatorname {LambertW}\left (\frac {x \sqrt {2}\, {\mathrm e}^{-\frac {c_{1}}{2}}}{2}\right )^{2}+2 \operatorname {LambertW}\left (\frac {x \sqrt {2}\, {\mathrm e}^{-\frac {c_{1}}{2}}}{2}\right )+1\right )}{4 \operatorname {LambertW}\left (\frac {x \sqrt {2}\, {\mathrm e}^{-\frac {c_{1}}{2}}}{2}\right )^{2}} \\ y \left (x \right ) &= \frac {x^{2} \left (2 \operatorname {LambertW}\left (-\frac {\sqrt {2}\, x c_{1}}{2}\right )^{2}+2 \operatorname {LambertW}\left (-\frac {\sqrt {2}\, x c_{1}}{2}\right )+1\right )}{4 \operatorname {LambertW}\left (-\frac {\sqrt {2}\, x c_{1}}{2}\right )^{2}} \\ y \left (x \right ) &= \frac {x^{2} \left (2 \operatorname {LambertW}\left (\frac {\sqrt {2}\, x c_{1}}{2}\right )^{2}+2 \operatorname {LambertW}\left (\frac {\sqrt {2}\, x c_{1}}{2}\right )+1\right )}{4 \operatorname {LambertW}\left (\frac {\sqrt {2}\, x c_{1}}{2}\right )^{2}} \\ \end{align*}

Solution by Mathematica

Time used: 2.580 (sec). Leaf size: 162

DSolve[4*y[x]==x^2+D[y[x],x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} \text {Solve}\left [\text {arctanh}\left (\frac {x}{\sqrt {4 y(x)-x^2}}\right )+\frac {x \left (-\sqrt {4 y(x)-x^2}\right )+\left (x^2-2 y(x)\right ) \log \left (2 y(x)-x^2\right )+2 y(x)}{2 \left (x^2-2 y(x)\right )}&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {x \sqrt {4 y(x)-x^2}+\left (x^2-2 y(x)\right ) \log \left (2 y(x)-x^2\right )+2 y(x)}{2 \left (x^2-2 y(x)\right )}-\text {arctanh}\left (\frac {x}{\sqrt {4 y(x)-x^2}}\right )&=c_1,y(x)\right ] \\ \end{align*}