82.22.2 problem Ex. 2

Internal problem ID [18856]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter IV. Singular solutions. problems at page 48
Problem number : Ex. 2
Date solved : Tuesday, January 28, 2025 at 12:30:56 PM
CAS classification : [_quadrature]

\begin{align*} a {y^{\prime }}^{3}&=27 y \end{align*}

Solution by Maple

Time used: 0.023 (sec). Leaf size: 191

dsolve(a*diff(y(x),x)^3=27*y(x),y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= 0 \\ y \left (x \right ) &= -\frac {2 \left (-x +c_{1} \right ) \sqrt {2}\, \sqrt {\left (-c_{1} +x \right ) a}}{a} \\ y \left (x \right ) &= \frac {2 \left (-x +c_{1} \right ) \sqrt {2}\, \sqrt {\left (-c_{1} +x \right ) a}}{a} \\ y \left (x \right ) &= \frac {\left (i-\sqrt {3}\right ) \sqrt {a \left (-c_{1} +x \right ) \left (1+i \sqrt {3}\right )}\, \left (-c_{1} +x \right )}{a} \\ y \left (x \right ) &= \frac {\left (-x +c_{1} \right ) \left (i-\sqrt {3}\right ) \sqrt {a \left (-c_{1} +x \right ) \left (1+i \sqrt {3}\right )}}{a} \\ y \left (x \right ) &= \frac {\left (-x +c_{1} \right ) \left (\sqrt {3}+i\right ) \sqrt {\left (i \sqrt {3}-1\right ) \left (-x +c_{1} \right ) a}}{a} \\ y \left (x \right ) &= \frac {\left (\sqrt {3}+i\right ) \sqrt {\left (i \sqrt {3}-1\right ) \left (-x +c_{1} \right ) a}\, \left (-c_{1} +x \right )}{a} \\ \end{align*}

Solution by Mathematica

Time used: 14.355 (sec). Leaf size: 106

DSolve[a*D[y[x],x]^3==27*y[x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {2}{3} \sqrt {\frac {2}{3}} \left (\frac {3 x}{\sqrt [3]{a}}+c_1\right ){}^{3/2} \\ y(x)\to \frac {2}{3} \sqrt {\frac {2}{3}} \left (-\frac {3 \sqrt [3]{-1} x}{\sqrt [3]{a}}+c_1\right ){}^{3/2} \\ y(x)\to \frac {2}{3} \sqrt {\frac {2}{3}} \left (\frac {3 (-1)^{2/3} x}{\sqrt [3]{a}}+c_1\right ){}^{3/2} \\ y(x)\to 0 \\ \end{align*}