82.23.2 problem Ex. 2

Internal problem ID [18858]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter IV. Singular solutions. problems on chapter IV. page 49
Problem number : Ex. 2
Date solved : Tuesday, January 28, 2025 at 12:31:00 PM
CAS classification : [[_homogeneous, `class G`]]

\begin{align*} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a^{3}&=0 \end{align*}

Solution by Maple

Time used: 0.084 (sec). Leaf size: 72

dsolve(x^3*diff(y(x),x)^2+x^2*y(x)*diff(y(x),x)+a^3=0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= -\frac {2 \sqrt {a x}\, a}{x} \\ y \left (x \right ) &= \frac {2 \sqrt {a x}\, a}{x} \\ y \left (x \right ) &= \frac {4 a^{3}+c_{1}^{2} x}{2 c_{1} x} \\ y \left (x \right ) &= \frac {4 a^{3} x +c_{1}^{2}}{2 c_{1} x} \\ \end{align*}

Solution by Mathematica

Time used: 0.902 (sec). Leaf size: 61

DSolve[x^3*D[y[x],x]^2+x^2*y[x]*D[y[x],x]+a^3==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to -\frac {e^{-\frac {c_1}{2}} \left (x+4 a^3 e^{c_1}\right )}{2 x} \\ y(x)\to \frac {e^{-\frac {c_1}{2}} \left (x+4 a^3 e^{c_1}\right )}{2 x} \\ \end{align*}