82.23.9 problem Ex. 10

Internal problem ID [18865]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter IV. Singular solutions. problems on chapter IV. page 49
Problem number : Ex. 10
Date solved : Tuesday, January 28, 2025 at 12:31:12 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _Clairaut]

\begin{align*} {y^{\prime }}^{2} \left (-a^{2}+x^{2}\right )-2 x y y^{\prime }+y^{2}-b^{2}&=0 \end{align*}

Solution by Maple

Time used: 0.063 (sec). Leaf size: 82

dsolve(diff(y(x),x)^2*(x^2-a^2)-2*diff(y(x),x)*x*y(x)+y(x)^2-b^2=0,y(x), singsol=all)
 
\begin{align*} y \left (x \right ) &= \frac {\sqrt {a^{2}-x^{2}}\, b}{a} \\ y \left (x \right ) &= -\frac {\sqrt {a^{2}-x^{2}}\, b}{a} \\ y \left (x \right ) &= c_{1} x -\sqrt {a^{2} c_{1}^{2}+b^{2}} \\ y \left (x \right ) &= c_{1} x +\sqrt {a^{2} c_{1}^{2}+b^{2}} \\ \end{align*}

Solution by Mathematica

Time used: 3.479 (sec). Leaf size: 419

DSolve[D[y[x],x]^2*(x^2-a^2)-2*D[y[x],x]*x*y[x]+y[x]^2-b^2==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} \text {Solve}\left [-\frac {\sqrt {a^2 \left (y(x)^2-b^2\right )} \arctan \left (\frac {\sqrt {y(x)^2-b^2}}{b}\right )}{b \sqrt {y(x)^2-b^2}}-\frac {2 \sqrt {y(x)^2-b^2} \sqrt {-a^2 \left (b^2-y(x)^2\right )} \arctan \left (\frac {b x \sqrt {y(x)^2-b^2}}{y(x) \left (\sqrt {a^2 \left (y(x)^2-b^2\right )}-\sqrt {a^2 \left (y(x)^2-b^2\right )+b^2 x^2}\right )+b^2 x}\right )}{b^3-b y(x)^2}&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {\sqrt {a^2 \left (y(x)^2-b^2\right )} \arctan \left (\frac {\sqrt {y(x)^2-b^2}}{b}\right )}{b \sqrt {y(x)^2-b^2}}+\frac {2 \sqrt {y(x)^2-b^2} \sqrt {-a^2 \left (b^2-y(x)^2\right )} \arctan \left (\frac {b x \sqrt {y(x)^2-b^2}}{y(x) \left (\sqrt {a^2 \left (y(x)^2-b^2\right )+b^2 x^2}-\sqrt {a^2 \left (y(x)^2-b^2\right )}\right )+b^2 x}\right )}{b^3-b y(x)^2}&=c_1,y(x)\right ] \\ y(x)\to -\frac {b \sqrt {a^2-x^2}}{a} \\ y(x)\to \frac {b \sqrt {a^2-x^2}}{a} \\ \end{align*}