82.30.3 problem Ex. 3

Internal problem ID [18887]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter VI. Linear equations with constant coefficients. problems at page 77
Problem number : Ex. 3
Date solved : Tuesday, January 28, 2025 at 12:33:28 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-4 y&=2 \sin \left (\frac {x}{2}\right ) \end{align*}

Solution by Maple

Time used: 0.004 (sec). Leaf size: 23

dsolve(diff(y(x),x$2)-4*y(x)=2*sin(1/2*x),y(x), singsol=all)
 
\[ y \left (x \right ) = {\mathrm e}^{2 x} c_{2} +{\mathrm e}^{-2 x} c_{1} -\frac {8 \sin \left (\frac {x}{2}\right )}{17} \]

Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 32

DSolve[D[y[x],{x,2}]-4*y[x]==2*Sin[1/2*x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to -\frac {8}{17} \sin \left (\frac {x}{2}\right )+c_1 e^{2 x}+c_2 e^{-2 x} \]