Internal
problem
ID
[18512]
Book
:
Elementary
Differential
Equations.
By
Thornton
C.
Fry.
D
Van
Nostrand.
NY.
First
Edition
(1929)
Section
:
Chapter
VII.
Linear
equations
of
order
higher
than
the
first.
section
56.
Problems
at
page
163
Problem
number
:
15
Date
solved
:
Thursday, March 13, 2025 at 12:11:23 PM
CAS
classification
:
[[_high_order, _exact, _linear, _nonhomogeneous]]
ode:=t^4*diff(diff(diff(diff(x(t),t),t),t),t)-2*t^3*diff(diff(diff(x(t),t),t),t)-20*t^2*diff(diff(x(t),t),t)+12*t*diff(x(t),t)+16*x(t) = cos(3*ln(t)); dsolve(ode,x(t), singsol=all);
ode=t^4*D[x[t],{t,4}]-2*t^3*D[x[t],{t,3}]-20*t^2*D[x[t],{t,2}]+12*t*D[x[t],t]+16*x[t]==Cos[3*Log[t]]; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(t**4*Derivative(x(t), (t, 4)) - 2*t**3*Derivative(x(t), (t, 3)) - 20*t**2*Derivative(x(t), (t, 2)) + 12*t*Derivative(x(t), t) + 16*x(t) - cos(3*log(t)),0) ics = {} dsolve(ode,func=x(t),ics=ics)