80.9.2 problem 2

Internal problem ID [18514]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First Edition (1929)
Section : Chapter VII. Linear equations of order higher than the first. section 63. Problems at page 196
Problem number : 2
Date solved : Thursday, March 13, 2025 at 12:11:25 PM
CAS classification : [[_high_order, _missing_y]]

\begin{align*} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }&={\mathrm e}^{2 x} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 33
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-3*diff(diff(diff(y(x),x),x),x)+3*diff(diff(y(x),x),x)-diff(y(x),x) = exp(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {{\mathrm e}^{2 x}}{2}+\left (\left (x^{2}-2 x +2\right ) c_{2} +c_3 x +c_{1} -c_3 \right ) {\mathrm e}^{x}+c_4 \]
Mathematica. Time used: 0.047 (sec). Leaf size: 41
ode=D[y[x],{x,4}]-3*D[y[x],{x,3}]+3*D[y[x],{x,2}]-D[y[x],x]==Exp[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} e^x \left (e^x+2 \left (c_3 \left (x^2-2 x+2\right )+c_2 (x-1)+c_1\right )\right )+c_4 \]
Sympy. Time used: 0.237 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-exp(2*x) - Derivative(y(x), x) + 3*Derivative(y(x), (x, 2)) - 3*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \left (C_{2} + x \left (C_{3} + C_{4} x\right )\right ) e^{x} + \frac {e^{2 x}}{2} \]