81.1.2 problem 1 (b)

Internal problem ID [18518]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter I. Introduction. Exercises at page 13
Problem number : 1 (b)
Date solved : Thursday, March 13, 2025 at 12:11:31 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }&=c \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \end{align*}

Maple. Time used: 0.083 (sec). Leaf size: 57
ode:=diff(diff(y(x),x),x) = c*(1+diff(y(x),x)^2)^(3/2); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= -i x +c_{1} \\ y \left (x \right ) &= i x +c_{1} \\ y \left (x \right ) &= \frac {\left (-1+\left (x +c_{1} \right )^{2} c^{2}\right ) \sqrt {-\frac {1}{-1+\left (x +c_{1} \right )^{2} c^{2}}}+c_{2} c}{c} \\ \end{align*}
Mathematica. Time used: 0.553 (sec). Leaf size: 75
ode=D[y[x],{x,2}]==c*(1+D[y[x],x]^2)^(3/2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_2-\frac {i \sqrt {c^2 x^2+2 c c_1 x-1+c_1{}^2}}{c} \\ y(x)\to \frac {i \sqrt {c^2 x^2+2 c c_1 x-1+c_1{}^2}}{c}+c_2 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
c = symbols("c") 
y = Function("y") 
ode = Eq(-c*(Derivative(y(x), x)**2 + 1)**(3/2) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(-(Derivative(y(x), (x, 2))**2/c**2)**(1/3)/2 + sqrt(3)*I*(Derivative(y(x), (x, 2))**2/c**2)**(1/3)/2 - 1) + Derivative(y(x), x) cannot be solved by the factorable group method