81.3.13 problem 13

Internal problem ID [18552]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter III. Ordinary differential equations of the first order and first degree. Exercises at page 33
Problem number : 13
Date solved : Thursday, March 13, 2025 at 12:12:48 PM
CAS classification : [_Bernoulli]

\begin{align*} y^{\prime }-\tan \left (x \right ) y&=y^{4} \sec \left (x \right ) \end{align*}

Maple. Time used: 0.019 (sec). Leaf size: 183
ode:=diff(y(x),x)-tan(x)*y(x) = y(x)^4*sec(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= \frac {\sec \left (x \right ) \left (\cos \left (x \right )^{3} \left (\cos \left (x \right )^{3} c_{1} -2 \cos \left (x \right )^{2} \sin \left (x \right )-\sin \left (x \right )\right )^{2}\right )^{{1}/{3}}}{\cos \left (x \right )^{3} c_{1} -2 \cos \left (x \right )^{2} \sin \left (x \right )-\sin \left (x \right )} \\ y \left (x \right ) &= -\frac {\left (1+i \sqrt {3}\right ) \sec \left (x \right ) \left (\cos \left (x \right )^{3} \left (\cos \left (x \right )^{3} c_{1} -2 \cos \left (x \right )^{2} \sin \left (x \right )-\sin \left (x \right )\right )^{2}\right )^{{1}/{3}}}{2 \cos \left (x \right )^{3} c_{1} -4 \cos \left (x \right )^{2} \sin \left (x \right )-2 \sin \left (x \right )} \\ y \left (x \right ) &= \frac {\sec \left (x \right ) \left (\cos \left (x \right )^{3} \left (\cos \left (x \right )^{3} c_{1} -2 \cos \left (x \right )^{2} \sin \left (x \right )-\sin \left (x \right )\right )^{2}\right )^{{1}/{3}} \left (i \sqrt {3}-1\right )}{2 \cos \left (x \right )^{3} c_{1} -4 \cos \left (x \right )^{2} \sin \left (x \right )-2 \sin \left (x \right )} \\ \end{align*}
Mathematica. Time used: 1.07 (sec). Leaf size: 109
ode=D[y[x],x]-Tan[x]*y[x]==y[x]^4*Sec[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{\sqrt [3]{-\sin ^3(x)+c_1 \cos ^3(x)-3 \sin (x) \cos ^2(x)}} \\ y(x)\to -\frac {\sqrt [3]{-1}}{\sqrt [3]{-\sin ^3(x)+c_1 \cos ^3(x)-3 \sin (x) \cos ^2(x)}} \\ y(x)\to \frac {(-1)^{2/3}}{\sqrt [3]{-\sin ^3(x)+c_1 \cos ^3(x)-3 \sin (x) \cos ^2(x)}} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 7.964 (sec). Leaf size: 104
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**4/cos(x) - y(x)*tan(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{\frac {1}{C_{1} \cos ^{3}{\left (x \right )} - 2 \sin {\left (x \right )} \cos ^{2}{\left (x \right )} - \sin {\left (x \right )}}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{\frac {1}{C_{1} \cos ^{3}{\left (x \right )} - 2 \sin {\left (x \right )} \cos ^{2}{\left (x \right )} - \sin {\left (x \right )}}}}{2}, \ y{\left (x \right )} = \sqrt [3]{\frac {1}{C_{1} \cos ^{3}{\left (x \right )} - 2 \sin {\left (x \right )} \cos ^{2}{\left (x \right )} - \sin {\left (x \right )}}}\right ] \]