Internal
problem
ID
[18566]
Book
:
A
short
course
on
differential
equations.
By
Donald
Francis
Campbell.
Maxmillan
company.
London.
1907
Section
:
Chapter
III.
Ordinary
differential
equations
of
the
first
order
and
first
degree.
Exercises
at
page
33
Problem
number
:
27
Date
solved
:
Thursday, March 13, 2025 at 12:22:16 PM
CAS
classification
:
[_linear]
ode:=(x^2-2*x*y(x))*diff(y(x),x)+x^2-3*x*y(x)+2*y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2-2*x*y[x])*D[y[x],x]+(x^2-3*x*y[x]+2*y[x]^2)==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2 - 3*x*y(x) + (x**2 - 2*x*y(x))*Derivative(y(x), x) + 2*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)