81.3.30 problem 30

Internal problem ID [18569]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter III. Ordinary differential equations of the first order and first degree. Exercises at page 33
Problem number : 30
Date solved : Thursday, March 13, 2025 at 12:22:25 PM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (6 x -5 y+4\right ) y^{\prime }&=2 x -y+1 \end{align*}

Maple. Time used: 0.465 (sec). Leaf size: 46
ode:=(6*x-5*y(x)+4)*diff(y(x),x) = 2*x-y(x)+1; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {\left (-4 x -1\right ) \operatorname {RootOf}\left (-3+\left (320 c_{1} x^{3}+240 c_{1} x^{2}+60 c_{1} x +5 c_{1} \right ) \textit {\_Z}^{4}-\textit {\_Z} \right )}{20}+\frac {2 x}{5}+\frac {3}{5} \]
Mathematica. Time used: 60.148 (sec). Leaf size: 4977
ode=(6*x-5*y[x]+4)*D[y[x],x]==2*x-y[x]+1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x + (6*x - 5*y(x) + 4)*Derivative(y(x), x) + y(x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out