81.4.5 problem 5

Internal problem ID [18580]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter IV. Ordinary linear differential equations with constant coefficients. Exercises at page 48
Problem number : 5
Date solved : Thursday, March 13, 2025 at 12:24:21 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)+3*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = {\mathrm e}^{x} \left (c_3 \,x^{2}+c_{2} x +c_{1} \right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 21
ode=D[y[x],{x,3}]-3*D[y[x],{x,2}]+3*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^x (x (c_3 x+c_2)+c_1) \]
Sympy. Time used: 0.144 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + 3*Derivative(y(x), x) - 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x \left (C_{2} + C_{3} x\right )\right ) e^{x} \]