Internal
problem
ID
[925]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
7.2,
Matrices
and
Linear
systems.
Page
417
Problem
number
:
problem
7
Date
solved
:
Tuesday, March 04, 2025 at 12:06:00 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = y(t)+z(t), diff(y(t),t) = z(t)+x(t), diff(z(t),t) = x(t)+y(t)]; dsolve(ode);
ode={D[x[t],t]==y[t]+z[t],D[y[t],t]==z[t]+x[t],D[z[t],t]==x[t]+y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-y(t) - z(t) + Derivative(x(t), t),0),Eq(-x(t) - z(t) + Derivative(y(t), t),0),Eq(-x(t) - y(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)