82.47.5 problem Ex. 5

Internal problem ID [18980]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter VIII. Exact differential equations, and equations of particular forms. Integration in series. problems at page 102
Problem number : Ex. 5
Date solved : Tuesday, January 28, 2025 at 12:41:19 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y&=x^{2} \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 45

Order:=6; 
dsolve(2*x^2*diff(y(x),x$2)-x*diff(y(x),x)+(1-x^2)*y(x)=x^2,y(x),type='series',x=0);
 
\[ y \left (x \right ) = c_{1} \sqrt {x}\, \left (1+\frac {1}{6} x^{2}+\frac {1}{168} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} x \left (1+\frac {1}{10} x^{2}+\frac {1}{360} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+x^{2} \left (\frac {1}{3}+\frac {1}{63} x^{2}+\operatorname {O}\left (x^{4}\right )\right ) \]

Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 160

AsymptoticDSolveValue[2*x^2*D[y[x],{x,2}]-x*D[y[x],x]+(1-x^2)*y[x]==x^2,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_2 x \left (\frac {x^6}{28080}+\frac {x^4}{360}+\frac {x^2}{10}+1\right )+c_1 \sqrt {x} \left (\frac {x^6}{11088}+\frac {x^4}{168}+\frac {x^2}{6}+1\right )+\sqrt {x} \left (-\frac {x^{11/2}}{1980}-\frac {x^{7/2}}{35}-\frac {2 x^{3/2}}{3}\right ) \left (\frac {x^6}{11088}+\frac {x^4}{168}+\frac {x^2}{6}+1\right )+x \left (\frac {x^5}{840}+\frac {x^3}{18}+x\right ) \left (\frac {x^6}{28080}+\frac {x^4}{360}+\frac {x^2}{10}+1\right ) \]