82.48.2 problem Ex. 2

Internal problem ID [18983]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter VIII. End of chapter problems at page 107
Problem number : Ex. 2
Date solved : Tuesday, January 28, 2025 at 12:43:47 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )}&=\frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 35

dsolve(diff(y(x),x$2)-a^2/( x*(a^2-x^2) )*diff(y(x),x) = x^2/( a*(a^2-x^2) ),y(x), singsol=all)
 
\[ y \left (x \right ) = \frac {2 c_{1} a \sqrt {-a +x}\, \sqrt {a +x}+2 c_{2} a -x^{2}}{2 a} \]

Solution by Mathematica

Time used: 0.096 (sec). Leaf size: 36

DSolve[D[y[x],{x,2}]-a^2/( x*(a^2-x^2) )*D[y[x],x] == x^2/( a*(a^2-x^2) ),y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_2-\frac {\left (\sqrt {x^2-a^2}-a c_1\right ){}^2}{2 a} \]