81.7.3 problem 4

Internal problem ID [18621]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter VI. Certain particular forms of equations. Exercises at page 74
Problem number : 4
Date solved : Thursday, March 13, 2025 at 12:25:31 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }&=-a^{2} y \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x) = -a^2*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = c_{1} \sin \left (a x \right )+c_{2} \cos \left (a x \right ) \]
Mathematica. Time used: 0.013 (sec). Leaf size: 20
ode=D[y[x],{x,2}]==-a^2*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \cos (a x)+c_2 \sin (a x) \]
Sympy. Time used: 0.081 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a**2*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- i a x} + C_{2} e^{i a x} \]