82.1.1 problem Ex. 3

Internal problem ID [18644]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter I. Definitions. Formation of differential equation. Exercises at page 12
Problem number : Ex. 3
Date solved : Thursday, March 13, 2025 at 12:27:11 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _Clairaut]

\begin{align*} {y^{\prime }}^{2}+x y^{\prime }-y&=0 \end{align*}

Maple. Time used: 0.017 (sec). Leaf size: 17
ode:=diff(y(x),x)^2+x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= -\frac {x^{2}}{4} \\ y \left (x \right ) &= c_{1} \left (x +c_{1} \right ) \\ \end{align*}
Mathematica. Time used: 0.006 (sec). Leaf size: 23
ode=D[y[x],x]^2+x*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to c_1 (x+c_1) \\ y(x)\to -\frac {x^2}{4} \\ \end{align*}
Sympy. Time used: 1.373 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - y(x) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} \left (C_{1} + 2 x\right )}{4} \]