82.5.1 problem Ex. 1

Internal problem ID [18658]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter II. Equations of the first order and of the first degree. Exercises at page 20
Problem number : Ex. 1
Date solved : Thursday, March 13, 2025 at 12:31:21 PM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, _dAlembert]

\begin{align*} x^{2}-4 x y-2 y^{2}+\left (y^{2}-4 x y-2 x^{2}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.027 (sec). Leaf size: 436
ode:=x^2-4*x*y(x)-2*y(x)^2+(y(x)^2-4*x*y(x)-2*x^2)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y \left (x \right ) &= \frac {\frac {\left (108 x^{3} c_{1}^{3}+4+4 \sqrt {-135 c_{1}^{6} x^{6}+54 x^{3} c_{1}^{3}+1}\right )^{{1}/{3}}}{2}+\frac {12 x^{2} c_{1}^{2}}{\left (108 x^{3} c_{1}^{3}+4+4 \sqrt {-135 c_{1}^{6} x^{6}+54 x^{3} c_{1}^{3}+1}\right )^{{1}/{3}}}+2 c_{1} x}{c_{1}} \\ y \left (x \right ) &= \frac {-\frac {\left (108 x^{3} c_{1}^{3}+4+4 \sqrt {-135 c_{1}^{6} x^{6}+54 x^{3} c_{1}^{3}+1}\right )^{{1}/{3}}}{4}-\frac {6 x^{2} c_{1}^{2}}{\left (108 x^{3} c_{1}^{3}+4+4 \sqrt {-135 c_{1}^{6} x^{6}+54 x^{3} c_{1}^{3}+1}\right )^{{1}/{3}}}+2 c_{1} x -\frac {i \sqrt {3}\, \left (-24 x^{2} c_{1}^{2}+\left (108 x^{3} c_{1}^{3}+4+4 \sqrt {-135 c_{1}^{6} x^{6}+54 x^{3} c_{1}^{3}+1}\right )^{{2}/{3}}\right )}{4 \left (108 x^{3} c_{1}^{3}+4+4 \sqrt {-135 c_{1}^{6} x^{6}+54 x^{3} c_{1}^{3}+1}\right )^{{1}/{3}}}}{c_{1}} \\ y \left (x \right ) &= -\frac {24 i \sqrt {3}\, c_{1}^{2} x^{2}-i \sqrt {3}\, \left (108 x^{3} c_{1}^{3}+4+4 \sqrt {-135 c_{1}^{6} x^{6}+54 x^{3} c_{1}^{3}+1}\right )^{{2}/{3}}+24 x^{2} c_{1}^{2}-8 c_{1} x \left (108 x^{3} c_{1}^{3}+4+4 \sqrt {-135 c_{1}^{6} x^{6}+54 x^{3} c_{1}^{3}+1}\right )^{{1}/{3}}+\left (108 x^{3} c_{1}^{3}+4+4 \sqrt {-135 c_{1}^{6} x^{6}+54 x^{3} c_{1}^{3}+1}\right )^{{2}/{3}}}{4 \left (108 x^{3} c_{1}^{3}+4+4 \sqrt {-135 c_{1}^{6} x^{6}+54 x^{3} c_{1}^{3}+1}\right )^{{1}/{3}} c_{1}} \\ \end{align*}
Mathematica. Time used: 30.81 (sec). Leaf size: 781
ode=(x^2-4*x*y[x]-2*y[x]^2)+(y[x]^2-4*x*y[x]-2*x^2)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\sqrt [3]{27 x^3+\sqrt {-135 x^6+54 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}{\sqrt [3]{2}}+\frac {6 \sqrt [3]{2} x^2}{\sqrt [3]{27 x^3+\sqrt {-135 x^6+54 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}+2 x \\ y(x)\to -\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{27 x^3+\sqrt {-135 x^6+54 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}{2 \sqrt [3]{2}}-\frac {3 \sqrt [3]{2} \left (1+i \sqrt {3}\right ) x^2}{\sqrt [3]{27 x^3+\sqrt {-135 x^6+54 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}+2 x \\ y(x)\to -\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{27 x^3+\sqrt {-135 x^6+54 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}{2 \sqrt [3]{2}}-\frac {3 \sqrt [3]{2} \left (1-i \sqrt {3}\right ) x^2}{\sqrt [3]{27 x^3+\sqrt {-135 x^6+54 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}+2 x \\ y(x)\to \frac {4 \sqrt [3]{2} 3^{2/3} x^2+4 \sqrt [3]{\sqrt {15} \sqrt {-x^6}+9 x^3} x+2^{2/3} \sqrt [3]{3} \left (\sqrt {15} \sqrt {-x^6}+9 x^3\right )^{2/3}}{2 \sqrt [3]{\sqrt {15} \sqrt {-x^6}+9 x^3}} \\ y(x)\to \frac {-4 \sqrt [3]{2} 3^{2/3} x^2+12 i \sqrt [3]{2} \sqrt [6]{3} x^2+8 \sqrt [3]{\sqrt {15} \sqrt {-x^6}+9 x^3} x-i 2^{2/3} 3^{5/6} \left (\sqrt {15} \sqrt {-x^6}+9 x^3\right )^{2/3}-2^{2/3} \sqrt [3]{3} \left (\sqrt {15} \sqrt {-x^6}+9 x^3\right )^{2/3}}{4 \sqrt [3]{\sqrt {15} \sqrt {-x^6}+9 x^3}} \\ y(x)\to \frac {\sqrt [3]{3} \left (\sqrt {15} \sqrt {-x^6}+9 x^3\right )^{2/3} \text {Root}\left [2 \text {$\#$1}^3-1\&,3\right ]-2 \sqrt [3]{-2} 3^{2/3} x^2+2 \sqrt [3]{\sqrt {15} \sqrt {-x^6}+9 x^3} x}{\sqrt [3]{\sqrt {15} \sqrt {-x^6}+9 x^3}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2 - 4*x*y(x) + (-2*x**2 - 4*x*y(x) + y(x)**2)*Derivative(y(x), x) - 2*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out