Internal
problem
ID
[18666]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
II.
Equations
of
the
first
order
and
of
the
first
degree.
Exercises
at
page
22
Problem
number
:
Ex.
4
Date
solved
:
Thursday, March 13, 2025 at 12:31:45 PM
CAS
classification
:
[[_homogeneous, `class D`], _Bernoulli]
ode:=x^4*exp(x)-2*m*x*y(x)^2+2*m*x^2*y(x)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^4*Exp[x]-2*m*x*y[x]^2)+2*m*x^2*y[x]*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") m = symbols("m") y = Function("y") ode = Eq(2*m*x**2*y(x)*Derivative(y(x), x) - 2*m*x*y(x)**2 + x**4*exp(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)