82.10.5 problem Ex. 5

Internal problem ID [18681]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter II. Equations of the first order and of the first degree. Exercises at page 27
Problem number : Ex. 5
Date solved : Thursday, March 13, 2025 at 12:37:23 PM
CAS classification : [_linear]

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+2 x y&=4 x^{2} \end{align*}

Maple. Time used: 0.000 (sec). Leaf size: 23
ode:=(x^2+1)*diff(y(x),x)+2*x*y(x) = 4*x^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {4 x^{3}+3 c_{1}}{3 x^{2}+3} \]
Mathematica. Time used: 0.032 (sec). Leaf size: 25
ode=(x^2+1)*D[y[x],x]+2*x*y[x]==4*x^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {4 x^3+3 c_1}{3 x^2+3} \]
Sympy. Time used: 0.242 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*x**2 + 2*x*y(x) + (x**2 + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} + \frac {4 x^{3}}{3}}{x^{2} + 1} \]