Internal
problem
ID
[18695]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
II.
Equations
of
the
first
order
and
of
the
first
degree.
Examples
on
chapter
II
at
page
29
Problem
number
:
Ex.
9
Date
solved
:
Thursday, March 13, 2025 at 12:38:57 PM
CAS
classification
:
[_linear]
ode:=diff(y(x),x)+y(x)/(-x^2+1)^(1/2) = (x+(-x^2+1)^(1/2))/(-x^2+1)^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]+y[x]/Sqrt[1-x^2]==(x+Sqrt[1-x^2])/(1-x^2)^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x + sqrt(1 - x**2))/(1 - x**2)**2 + y(x)/sqrt(1 - x**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out