82.12.32 problem Ex. 35

Internal problem ID [18718]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter II. Equations of the first order and of the first degree. Examples on chapter II at page 29
Problem number : Ex. 35
Date solved : Thursday, March 13, 2025 at 12:40:59 PM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} 2 x^{2} y^{2}+y-\left (x^{3} y-3 x \right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.242 (sec). Leaf size: 43
ode:=2*x^2*y(x)^2+y(x)-(x^3*y(x)-3*x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y \left (x \right ) = \frac {\operatorname {RootOf}\left (\textit {\_Z}^{60} c_{1} +15 \textit {\_Z}^{40} c_{1} -64 x^{5} \textit {\_Z}^{35}+75 \textit {\_Z}^{20} c_{1} +125 c_{1} \right )^{20}+5}{4 x^{2}} \]
Mathematica. Time used: 10.85 (sec). Leaf size: 997
ode=(2*x^2*y[x]^2+y[x])-(x^3*y[x]-3*x)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy. Time used: 0.614 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*y(x)**2 - (x**3*y(x) - 3*x)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ - \log {\left (x \right )} + \frac {3 \log {\left (x^{2} y{\left (x \right )} \right )}}{5} - \frac {7 \log {\left (x^{2} y{\left (x \right )} - \frac {5}{4} \right )}}{20} = C_{1} \]