83.5.7 problem 7

Internal problem ID [19102]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter II. Equations of first order and first degree. Exercise II (D) at page 16
Problem number : 7
Date solved : Tuesday, January 28, 2025 at 12:56:12 PM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

\begin{align*} \left (1+x +x y^{2}\right ) y^{\prime }+y+y^{3}&=0 \end{align*}

Solution by Maple

Time used: 0.020 (sec). Leaf size: 16

dsolve((1+x+x*y(x)^2)*diff(y(x),x)+(y(x)+y(x)^3)=0,y(x), singsol=all)
 
\[ y \left (x \right ) = \tan \left (\operatorname {RootOf}\left (-\textit {\_Z} -x \tan \left (\textit {\_Z} \right )+c_{1} \right )\right ) \]

Solution by Mathematica

Time used: 0.177 (sec). Leaf size: 78

DSolve[(1+x+x*y[x]^2)*D[y[x],x]+(y[x]*y[x]^3)==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [x=e^{\frac {3 y(x)^2+1}{3 y(x)^3}} \int _1^{y(x)}-\frac {e^{-\frac {3 K[1]^2+1}{3 K[1]^3}}}{K[1]^4}dK[1]+c_1 e^{\frac {3 y(x)^2+1}{3 y(x)^3}},y(x)\right ] \]